Aging and Pension Reform in a Two-Region World: The Role of Human Capital

### Edgar Vogel, Alexander Ludwig, Axel Börsch-Supan

University of Mannheim, University of Cologne, Munich Center for the Economics of Aging

13th Annual Joint Conference of the RRC Washington D.C., August 4 – 5, 2011

# Questions & General Setup

- Effects of population aging on
  - Factor prices
  - Welfare
- How do answers change
  - 1. With endogenous human capital
  - 2. Under different social security regimes / pension reforms
  - 3. More interesting: interaction of 1.) and 2.)

- Two-region open economy OLG model with endogenous
  - Consumption/saving decision
  - Labor supply
  - Human capital accumulation

# Household Setup

- Agents start making decisions at age 16, retire at age 65 (benchmark) and live at most until age 90
- They choose each period
  - Consumption/saving
  - Labor supply
  - Time investment into human capital
- ... and like consumption and leisure
- Receive labor income or pensions
  - Linear contribution rate  $\tau$  to social security
  - $\bullet\,$  Pensions are a fraction  $\rho$  of current net wages

Formal Representation

# Macroeconomic Setup & Government

- Aggregate production with physical capital and effective labor
- Effective labor  $L_t = \sum_{j=0}^{jr-1} \ell_{t,j} N_{t,j} h_{t,j}$
- Factors earn marginal products
- Regional labor markets, international capital markets, exogenous technical progress
- Balanced budget PAYGO social security with two scenarios
  - 1. Benchmark Retirement: replacement rate  $\rho$  or contribution rate  $\tau$  fixed
  - 2. Pension Reform: increase retirement age given  $\tau/\rho$  regime

# Pension Reform & Calibration

- Increasing the Retirement Age
  - Simple rule: for additional 1.5 years of life expectancy at age 65 retirement increases by one year
  - Retirement age of 71 years

▶ U.S. Life Expectancy at Age 65

Calibration

- Demographics: United Nations
  - "Old": basically OECD
  - "Young": rest of the world
- Targets: K/Y, avg. labor supply, I/Y, region-specific wage profiles, and region-specific growth of GDP/Capita

Retirement Age & Wage Profiles

▶ WAPR

# Thought Experiment & Results

- Thought experiment
  - Exogenous demographics induces economic transition
  - Two human capital specifications
    - Exogenous human capital
    - Endogenous human capital
    - $\Rightarrow\,$  during calibration identical, then diverging
- Results
  - Macroeconomic variables
    - Rate of return
    - Detrended GDP per capita
  - Welfare of households alive in 2010
  - Effects of pension reform
  - Focus on
    - Endogenous vs. exogenous human capital
    - Results for "old" countries, open economy

### Benchmark Retirement Age: Rate of Return

#### Figure: Rate of Return



Open vs. Closed

# Benchmark Retirement Age: Detrended GDP per Capita

### Figure: Detrended GDP per Capita



Open vs. Closed

# Pension Reform: Detrended GDP per Capita (1)

### Figure: Detrended GDP per Capita



Rate of Return

# Pension Reform: Decomposition of Effects

Effects of increasing retirement age on GDP/Capita

- Exogenous human capital
  - 1. "Mechanical" effect  $\Rightarrow$  more working people
  - 2. Higher labor supply if  $\tau \downarrow$

### Endogenous human capital

- 1. "Mechanical" effect  $\Rightarrow$  more working people
- 2. Higher investment into human capital
- 3. Higher labor supply (to make use of 2.)
- 4. Higher labor supply and human capital if  $\tau \downarrow \Rightarrow$  effects are not additive

### Pension Reform: Detrended GDP per Capita (2)

### Figure: Detrended GDP per Capita



- Define a base year (here 2010)
- Compute (remaining) lifetime utility  $V_{GE}$  given GE prices
- "Freeze" prices/transfers from base year and recompute  $V_{2010}$
- Welfare difference expressed as Consumption Equivalent Variation (CEV)
- Positive numbers are welfare gains from GE effects

Welfare Evaluation - Graph

### Welfare Effects of Reform: Agents alive in 2010





Open vs. Closed

### Welfare Effects of Reform: Agents alive in 2010

### Table: Maximum Welfare Losses - Agents alive 2010

|                | Open Economy    |       |                |       |
|----------------|-----------------|-------|----------------|-------|
| Pension System | Constant $\rho$ |       | Constant $	au$ |       |
|                | Endog.          | Exog. | Endog.         | Exog. |
| Benchmark      | -3.0%           | -3.6% | -4.4%          | -6.5% |
| Pension Reform | -1.9%           | -3.0% | -3.6%          | -6.0% |
|                |                 |       |                |       |

|--|

### Table: Maximum Welfare Losses - Agents alive 2010

|                | Open Economy    |       |                 |       |
|----------------|-----------------|-------|-----------------|-------|
| Pension System | Constant $\rho$ |       | Constant $\tau$ |       |
|                | Endog.          | Exog. | Endog.          | Exog. |
| Benchmark      | -3.0%           | -3.6% | -4.4%           | -6.5% |
| Pension Reform | -1.9%           | -3.0% | -3.6%           | -6.0% |
|                |                 |       |                 |       |
|                |                 |       |                 |       |
| Difference     | 36.7%           | 16.7% | 18.2%           | 7.7%  |

# Conclusions & Policy Implications

- Investment into human capital substantially dampens
  - effects of aging on factor prices
  - welfare losses
- PI: Important to keep this adjustment channel flexible
  - A generous pension system is more redistributive but lowers welfare of future generations
  - Higher retirement age can substantially increase welfare, especially when distortions are already high
- PI: Small distortions are magnified: human capital is "multiplier"  $\Rightarrow$  effects are not additive
- PI: Inequality best decreased by increasing retirement age
  - Warning: we assumed a frictionless world ⇒ results are only upper/lower bounds of "true" effects

#### Table: Model Parameters

|               |            |                                                | "Young" | "Old" |
|---------------|------------|------------------------------------------------|---------|-------|
| Preferences   | $\sigma$   | Inverse of Inter-Temporal Elasticity of Subst. | 2.00    |       |
|               | $\beta$    | Pure Time Discount Factor                      | 0.985   |       |
|               | $\phi$     | Weight of Consumption                          | 0.370   |       |
| Human Capital | ξ          | Scaling Factor                                 | 0.176   | 0.166 |
|               | $\psi$     | Curvature Parameter                            | 0.576   | 0.586 |
|               | $\delta^h$ | Depreciation Rate of Human Capital             | 1.4%    | 0.9%  |
|               | $h_0$      | Initial Human Capital Endowment                | 1.00    | 1.00  |
| Production    | $\alpha$   | Share of Physical Capital in Production        | 0.33    |       |
|               | $\delta$   | Depreciation Rate of Physical Capital          | 3.5%    |       |
|               | gA         | Exogenous Growth Rate                          |         |       |
|               |            | Calibration Period                             | 1.5%    | 1.9%  |
|               |            | Final Steady State                             | 1.9%    | 1.9%  |

*Notes:* "Young" and "Old" refer to the region. Only one value in a column indicates that the parameter is identical for both regions.

# U.S. Life Expectancy

### Figure: U.S. Life Expectancy at Age 65



Sources: Human Mortality Database (2011).

▶ Back

### Figure: Constant vs. Variable Prices





### Benchmark Retirement Age: Net Foreign Assets

### Figure: Net Foreign Assets



### Benchmark Retirement Age: Net Foreign Assets

### Figure: Net Foreign Assets



# Benchmark Retirement: Comparison GDP/GNP per Capita

### Figure: Comparison GDP/GNP per Capita



- Compute equilibrium transition path for closed economies
- We then "surprise" agents by opening up the economy in 1975
- Compute the transition to the open economy steady-state
- Agents alive in 1975 re-optimize for their remaining lifetime, newborns use prices and transfers from open economy

🕨 Back

### Benchmark Retirement Age: Rate of Return

#### Figure: Rate of Return





# Household Setup - Formal Representation

Formally, agents maximize

$$\max \sum_{j=0}^{J} \beta^{j} \pi_{j} \frac{1}{1-\sigma} \{ c_{j}^{\phi} (\underbrace{1-\ell_{j}-e_{j}}_{leisure})^{1-\phi} \}^{1-\sigma}$$

subject to

$$\begin{array}{lll} a_{j+1} & = & \begin{cases} (a_j + tr_t)(1 + r_t) + w_{t,j}^n - c_j & \text{if } j < jr \\ (a_j + tr_t)(1 + r_t) + p_t - c_j & \text{if } j \geq jr \end{cases} \\ w_{t,j}^n & = & \ell_j h_j w_t (1 - \tau_t) \end{array}$$

human capital formation using Ben-Porath (1967) technology

$$h_{j+1} = h_j(1-\delta^h) + \xi(h_j e_j)^{\psi}$$

# Benchmark Retirement Age: Detrended GDP per Capita

### Figure: Detrended GDP per Capita



# Welfare Effects Benchm. Retirement: Agents alive in 2010

#### Figure: Welfare: Agents alive in 2010



### Retirement Age & Wage Profiles



► Back

#### Figure: Rate of Return



#### Figure: Working Age Population Ratio



Sources: United Nations (2007) and own computations. "Old" includes USA, Canada, Japan, Australia, New Zealand, Switzerland, Norway and the EU15 "Young" all other countries

Edgar Vogel, Alexander Ludwig, Axel Börsch-Supan Pension Reform and Human Capital