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1 Introduction and Related Literature

This paper investigates the determinants of joint retirement decisions in couples. A majority

of retirees are married and many studies indicate that a significant proportion of individuals

retires within a year of their spouse. Articles documenting joint retirement of couples (and

datasets employed) include Hurd (1990) (New Beneficiary Survey); Blau (1998) (Retirement

History Study); Gustman and Steinmeier (2000) (National Longitudinal Survey of Mature

Women); Michaud (2003) and Gustman and Steinmeier (2004) (Health and Retirement

Study); and Banks, Blundell, and Casanova Rivas (2007) (English Longitudinal Study of

Ageing). Even though this is especially the case for couples closer in age, a spike in the

distribution of retirement time differences at zero typically exists for most couples, regardless

of the age difference. This is illustrated in Figure 1.

The spike in the distribution of the difference in the retirement dates for husbands

and wives in Figure 1 suggests that many couples retire simultaneously. There are at least

two distinct explanations for such a phenomenon. One is that husband and wife receive

correlated shocks (observable or not), driving them to retirement at similar times. The

other is that retirement is jointly decided, reflecting taste interactions of both members of

the couple.

The distinction between these two drivers of joint retirement (which are not mutually

exclusive) parallels the categorization by Manski (1993) of correlated and endogenous effects

in the social interactions literature, and is similar to the distinction between seemingly

unrelated regressions and simultaneous equations. There, as in this article, discerning these

two sources of correlation in outcomes is relevant for analytical and policy reasons. For

example, if the estimated model does not allow for the joint decision by the couple, then the

estimate of the effect of a retirement-inducing shock will be biased if the retirement times are

indeed chosen jointly. Such spillover effects invalidate, for instance, the commonly employed

Stable Unit Treatment Value Assumption (SUTVA) taken in the treatment effects literature,

preventing the clear separation of direct and indirect effects occurring through feedback to

the partner’s retirement decision [e.g., Burtless (1990)]. Furthermore, the multiplier effect
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induced by the endogenous, direct effect of husband on wife or vice-versa is an important

conduit for policy. The quantification of its relative importance is hence paramount for both

methodological and substantive reasons.

Unfortunately, standard econometrics duration models are not suitable to analyze

joint durations with simultaneity of the kind that we have in mind, and an important con-

tribution of this paper is therefore the specification of an econometric duration model that

allows for simultaneity [see also de Paula (2009) and Honoré and de Paula (2010)].

The broader literature on retirement is abundant and a number of papers focusing on

retirement decisions in a multi-person household have appeared in the last 20 years. Hurd

(1990) presents one of the early documentations of the joint retirement phenomenon. Later

papers confirming the phenomenon and further characterizing the correlates of joint retire-

ment are Blau (1998); Michaud (2003); Coile (2004a); Banks, Blundell, and Casanova Rivas

(2007). Gustman and Steinmeier (2000) and Gustman and Steinmeier (2004) work with

a dynamic non-unitary structural model1 for husband-wife retirement and focus on Nash

solutions to the joint retirement decision.2 Gustman and Steinmeier (2009) present a richer

(non-unitary) structural model with a solution concept that deviates from Nash Equilibrium

and is guaranteed to exist and be unique. Michaud and Vermeulen (forthcoming) estimate

a version of the “collective” model [see Chiappori (1992)] where (static) labor force partici-

pation decisions by husband and wife are repeatedly observed from a panel (i.e., the HRS).

Casanova Rivas (2010) recently suggests a detailed unitary structural dynamic model of joint

retirement. Coile (2004b) presents statistical evidence on health shocks and retirement de-

cision by the couple and Blau and Gilleskie (2004) present a structural model also focusing

on health outcomes and retirement in the couple.

In our analysis, we assume that retirement decisions are made through Nash Bargain-

ing on the retirement date. Though this also leads to Pareto efficient outcomes, it imposes

1See Browning, Chiappori, and Lechene (2006) for a characterization of unitary and non-unitary household

models.
2When more than one equilibrium is possible, they use an equilibrium selection rule that selects the

Pareto dominant equilibrium or, in case no equilibrium is dominant, the equilibrium where retirement by at

least one household member happens earliest (see, e.g., Gustman and Steinmeier (2000), pp. 515, 520).
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more structure than Casanova Rivas (2010) or Michaud and Vermeulen (forthcoming) [see

Chiappori (1992) and Chiappori, Donni, and Komunjer (2010)]. Our model is a variation of a

recently developed model (Honoré and de Paula (2010)) which extends well-known duration

models to a (non-cooperative) strategic stopping game, where endogenous and correlated

effects can be disentangled and interpreted (see also de Paula (2009) for a related analysis).3

As such it is close to traditional duration models in the statistics and econometrics literature.

Our model extends the usual statistical framework in a way that allows for joint termination

of simultaneous spells with positive probability. In the usual hazard modeling tradition, this

property does not arise. It is nonetheless essential to model joint retirement behavior. One

can appeal to existing statistical models to address this issue as done by An, Christensen,

and Gupta (2004) in the analysis of joint retirement in Denmark, but parameter estimates

cannot be directly interpretable in terms of the decision process by the couple. The frame-

work presented in this paper directly corresponds to an economic model of decision-making

by husband and wife and consequently can be more easily interpreted in light of such model.

To estimate our model, we resort to indirect inference (Smith (1993); Gourieroux, Monfort,

and Renault (1993); and Gallant and Tauchen (1996)), using as auxiliary models standard

duration models and ordered models, as suggested in Honoré and de Paula (2010) for a

similar model. (For an earlier application of indirect inference in a duration context, see

Magnac, Robin, and Visser (1995)).

The remainder of this paper proceeds as follows. Section 2 describes our model and

the empirical strategy for its estimation. In Section 3 we briefly describe the data and

subsequently discuss our results in Section 4. We conclude in Section 5.

3In fact, our model estimates are obtained using auxiliary models that are interpretable in terms of

the (non-cooperative game-theoretic) model in Honoré and de Paula (2010), which does not impose Pareto

efficiency and equilibrium uniqueness.
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2 Model and Empirical Strategy

In our model, spouse i receives a utility flow of Ki before retirement. After retirement, the

utility flow is given by Z(s)ϕiδ(s, tj)e
−ρs at time s. The function Z(·) is a smooth increasing

function such that Z(0) = 0. The factor ϕi = ϕ(xi) is a positive function of individual

observable covariates. Time is discounted at the rate ρ > 0 and δ(s, tj) = (δ−1)1(s ≥ tj)+1

where δ > 1 and tj is the retirement date for spouse j, representing the effect of spouse j’s

retirement on i’s utility flow from retirement. This structure is similar to the one defined in

Honoré and de Paula (2010): if δ = 1, we obtain a standard proportional hazards model for

the time until retirement. Time is measured in terms of “family age,” which is set to zero

when the oldest partner in the couple reaches 60 years-old. Retirement timing is obtained

as the solution to the Nash bargaining problem [Nash (1950), see also Zeuthen (1930)]:

maxt1,t2

(∫ t1
0
K1e

−ρsds +
∫∞
t1
Z(s)ϕ1δ(s ≥ t2)e−ρsds− A1

)
×(∫ t2

0
K2e

−ρsds+
∫∞
t2
Z(s)ϕ2δ(s ≥ t1)e−ρsds− A2

)
where A1 and A2 are the threat points for spouses 1 and 2, respectively. In our estimation,

we set Ai equal to a multiple of the utility spouse i would obtain if spouse j never retired.

Note that the first term can be further simplified to(
K1
−e−ρs

ρ

∣∣∣∣t1
0

+ ϕ1

∫ ∞
t1

Z(s)e−ρsds+ ϕ1 (δ − 1)

∫ ∞
max{t1,t2}

Z(s)e−ρsds− A1

)
=

(
K1ρ

−1
(
1− e−ρt1

)
+ ϕ1Z̃ (t1) + ϕ1 (δ − 1) Z̃ (max {t1, t2})− A1

)
where

Z̃ (t) =

∫ ∞
t

Z(s)e−ρsds

and hence

Z̃ ′ (t) = −Z (t) e−ρt.

An analogous simplification applies to the second term. In the absence of an interaction effect

(δ = 1), a Weibull baseline hazard for the proportional hazard model would correspond to

Z (t;α) = ta
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and consequently

Z̃ (t;α) =

∫ ∞
t

sαe−ρsds

=

(
1

ρ

)α+1

Γ (α + 1, ρt)

where the upper incomplete gamma function is defined by

Γ (α, x) =

∫ ∞
x

sα−1e−sds.

This expression can be further manipulated by noting that if the random variable X is

Gamma distributed with parameters α and β = 1

F Γ(α,1) (x) = P (X > x)

=
1

Γ (α)

∫ ∞
x

sα−1e−sds =
Γ (α, x)

Γ (α)
.

Consequently,

Z̃ (t;α) =

(
1

ρ

)α+1

Γ (α + 1, ρt)

=

(
1

ρ

)α+1

Γ (α + 1)F Γ(α+1,1) (ρt)

which is useful since both Γ (·) and F Γ(·,1) (·) are preprogrammed in many languages or

softwares commonly used.

In summary, the objective function is given by

N (t1, t2) =

≡I︷ ︸︸ ︷(
K1ρ

−1
(
1− e−ρt1

)
+ ϕ1Z̃ (t1) + ϕ1 (δ − 1) Z̃ (max {t1, t2})− A1

)
×(

K2ρ
−1
(
1− e−ρt2

)
+ ϕ2Z̃ (t2) + ϕ2 (δ − 1) Z̃ (max {t1, t2})− A2

)
︸ ︷︷ ︸

≡II

If spouses retire sequentially, the objective function first order conditions are obtained

as follows. Assuming t1 < t2 and taking derivatives with respect to t1 we get:

(
K1e

−ρt1 − Z(t1)ϕ1e
−ρt1
)(∫ t2

0

K2e
−ρsds+

∫ ∞
t2

Z(s)ϕ2δ(s ≥ t1)e−ρsds− A2

)
= 0.

This implies that

K1 = Z(t1)ϕ1
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or ∫ t2

0

K2e
−ρsds+

∫ ∞
t2

Z(s)ϕ2δ(s ≥ t1)e−ρsds = A2.

The second possibility is ruled out since player 2 should get more than his or her threat

point at an interior optimum. The first order condition with respect to t2 gives

Z(t2)ϕ1 (1− δ)× (II) + (I)×
(
K2e

−ρt2 − Z(t2)ϕ2δe
−ρt2
)
.

We note that the t2 that sets the above expression to zero occurs earlier than the value ob-

tained in Honoré and de Paula (2010): Z−1(K2/ϕ2δ). Because Z(t2)ϕ1 (1− δ)× (II) ≤ 0 at

the optimum, for the first order condition to be zero the product (I)×(K2e
−ρt2 − Z(t2)ϕ2δe

−ρt2)

should be positive. If the product were zero, one would have t2 = Z−1(K2/ϕ2δ) (since

setting I to zero would not be optimal as in previous arguments and we then have that

(K2e
−ρt2 − Z(t2)ϕ2δe

−ρt2) = 0, which is equivalent to t2 = Z−1(K2/ϕ2δ)). To make the

product positive, we then have to lower t2 below Z−1(K2/ϕ2δ). This implies that

T1 = Z−1 (K1/ϕ1)

T2 ≤ Z−1 (K2/ (ϕ2δ))

which gives the same timing choice for the first retiree as in Honoré and de Paula (2010) but

an earlier one for the second spouse. A similar set of calculations is obtained for T2 < T1.4

A third possibility is for spouses to retire jointly. In this case,

T = arg max
t
N (t, t)

= arg max
t

(
K1ρ

−1
(
1− e−ρt

)
+ ϕ1Z̃ (t) + ϕ1 (δ − 1) Z̃ (t)− A1

)
(
K2ρ

−1
(
1− e−ρt

)
+ ϕ2Z̃ (t) + ϕ2 (δ − 1) Z̃ (t)− A2

)
= arg max

t

(
K1ρ

−1
(
1− e−ρt

)
+ ϕ1δZ̃ (t)− A1

)(
K2ρ

−1
(
1− e−ρt

)
+ ϕ2δZ̃ (t)− A2

)
.

4For computation purposes we also notice that the objective function is unimodal on t2. If we start at

the critical value, increasing t2 reduces the function. This is because Z(t2)ϕ1 (1− δ) becomes more negative

and II becomes more positive, so the product becomes more negative. For the second term, I decreases

and K2e
−ρt2 −Z(t2)ϕ2δe

−ρt2 , which is positive, decreases. Their product then decreases. Consequently, the

derivative, which is the sum of these two products becomes negative, and the objective function is decreasing.

Analogously we can also determine that the objective function is increasing for values below the critical value.
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The derivative of this is

e−ρt (K1 − ϕ1δZ (t))
(
K2ρ

−1
(
1− e−ρt

)
+ ϕ2δZ̃ (t)− A2

)
+e−ρt

(
K1ρ

−1
(
1− e−ρt

)
+ ϕ1δZ̃ (t)− A1

)
(K2 − ϕ2δZ (t))

which, set to zero, delivers the optimum implicitly. It can be noted that when t < Z−1 (K1/ (ϕ1δ))

and t < Z−1 (K2/ (ϕ2δ)) this is positive, and when t > Z−1 (K1/ (ϕ1δ)) and t > Z−1 (K2/ (ϕ2δ))

it is negative. The optimum is therefore in the interval

min
{
Z−1 (K1/ (ϕ1δ)) , Z

−1 (K2/ (ϕ2δ))
}
≤ t ≤ max

{
Z−1 (K1/ (ϕ1δ)) , Z

−1 (K2/ (ϕ2δ))
}

This is useful in the numerical solution to the above equation used in the estimation.

In any case, it should be pointed out that the set of (K1, K2) realizations for which

T = T1 = T2 is an optimum is larger than the set obtained in the non-cooperative setup from

Honoré and de Paula (2010). This is illustrated in Figure 2, where the area between the

dotted lines is the joint retirement region in Honoré and de Paula (2010) and the area between

solid lines is the joint retirement region in the current paper. Also, whereas in that paper any

date within a range max {Z−1 (K1/ (ϕ1δ)) , Z
−1 (K2/ (ϕ2δ))} = T < T ] was sustained as an

equilibrium for pairs (K1, K2) inducing joint retirement, in the current article the equilibrium

joint retirement date for a given realization of (K1, K2) is uniquely pinned down. Because

Nash bargaining implies Pareto efficiency and because T is the Pareto dominant outcome

among the possible multiple equilibria in the game analyzed by Honoré and de Paula (2010),

it should be the case that joint retirement in the Nash bargaining model occurs on or before

T . In comparison to the non-cooperative paradigm adopted in our previous paper, Nash

bargaining allows spouses to “negotiate” an earlier retirement date, which is advantageous

to both.

2.1 Estimation: Indirect Inference

To estimate our model we employ an indirect inference strategy (see Gourieroux, Monfort,

and Renault (1993); Smith (1993); and Gallant and Tauchen (1996)). Rather than estimat-

ing the Maximum Likelihood Estimator for the true model characterized by parameter θ,
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one estimates an approximate (auxiliary) model with parameter β. Then, under the usual

regularity conditions,

β̂ = arg max
b

n∑
i=1

logLa (b; zi)
p−→ arg max

b
Eθ0 [logLa (b; zi)] ≡ β0 (θ0)

where La is the likelihood function for the auxiliary model and the expectation Eθ0 is taken

with respect to the true model. β0 (θ0) is known as the pseudo–true value and the key is

that it depends on the true parameters of the data–generation process (θ0). If one knew the

pseudo–true value as a function of θ0, then it could be used to solve the equation

β̂ = β0

(
θ̂
)

and obtain an estimator for θ0. In our case, we do not know β0(θ), but we can easily

approximate this function using simulations. For each θ, we generate R draws

{(z1r (θ) , z2r (θ) , . . . , znr (θ))}Rr=1

and then estimate the function

β0(θ) ≡ arg max
b
Eθ [logLa (b; zi)]

by

β̃R (θ) = arg max
b

1

R

R∑
r=1

1

n

n∑
i=1

(logLa (b; zir (θ)))

In other words, we find θ̂ such that the generated data set using θ̂ gives the same estimate

in the auxiliary model as we got in the real sample:

β̂ = β̃R

(
θ̂
)

Alternatively, one could also measure the distance between β̂ and β̃R (θ) by

n∑
i=1

logLa
(
β̂; zi

)
−

n∑
i=1

logLa
(
β̃R (θ) ; zi

)
≥ 0.

One could then minimize this function to make the difference between β̂ and β̃R (θ) as small

as possible. This implies that

β̂ = arg max
b

n∑
i=1

logLa (b; zi) =⇒ 1

n

n∑
i=1

Sa
(
β̂; zi

)
= 0
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so β̂ converges to the solution to

Eθ [Sa (b; zi)] = 0

which is just β0 (θ0) from before. So if we knew the function β0 (θ) we would estimate θ0 by

solving β̂ = β0

(
θ̂
)

which is the same as

Eθ̂

[
Sa
(
β̂; zi

)]
= 0

As before, we estimate Eθ [Sa (·; zi)] as a function of θ using

1

R

R∑
r=1

1

n

n∑
i=1

Sa (·; zir (θ))

and θ0 is estimated by solving

1

R

R∑
r=1

1

n

n∑
i=1

Sa
(
β̂; zir (θ)

)
= 0.

If dim (Sa) > dim (β), we minimize(
1

R

R∑
r=1

1

n

n∑
i=1

Sa
(
β̂; zir (θ)

))>
W

(
1

R

R∑
r=1

1

n

n∑
i=1

Sa
(
β̂; zir (θ)

))
over θ. The weighting matrix W is a positive definite matrix performing the usual role in

terms of estimator efficiency. This strategy is useful because we only estimate the auxiliary

model once using the real data. After that, we evaluate its FOC for different draws of θ.

2.1.1 Auxiliary Model

Our auxiliary model is composed of three reduced form models that are chosen to capture

the features of the data that are our main concern: the duration until retirement for each

spouse, and the idea that members of some married couples choose to retire jointly. For

the first two, we use a standard proportional hazard model for each spouse with a Weibull

baseline hazard and the usual specification for the covariate function. For the third, we use

an ordered Logit model as suggested by our paper Honoré and de Paula (2010). We present

the models in detail below.

Weibull Proportional Hazard Model
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For each spouse, the baseline hazard for retirement is assumed to be

Z (t) = tα ⇒ λ (t) ≡ Z ′ (t) = αtα−1

and the covariate function is ϕ(x) = exp
(
x>β

)
. The (log) density of retirement conditional

on x is then given by:

log f (t|x) = log
{
λ (t) exp

(
x>β

)
exp

(
−Z (t) exp

(
x>β

))}
= logα+(α− 1) log t+x>β−tα exp

(
x>β

)
The (conditional) survivor function can be analogously obtained and is given by:

logS (t|x) = log
{

exp
(
−Z (t) exp

(
x>β

))}
= −tα exp

(
x>β

)
Letting ci = 1 if the observation is (right-)censored, and = 0 otherwise, we obtain the

log-likelihood function:

logL =
n∑
i=1

(1− ci) (logα + (α− 1) log (ti) + x′iβ)−
n∑
i=1

tαi exp (x′iβ)

First and second derivatives used in the computation of the MLE for this auxiliary model

are presented in the Appendix.

Ordered Logit Model Pseudo MLE

In the spirit of the estimation strategy suggested in Honoré and de Paula (2010),

we also use as auxiliary model an ordered logit. Whereas the Weibull model will convey

information on the timing of retirement, this second auxiliary model will provide information

on the pervasiveness of joint retirement and help identify the taste interactions leading to

this phenomenon (i.e. δ). Define

yi =


1, if t1 > t2

2, if t1 = t2

3, if t1 < t2

The model is then given by:

y?i = x>i β − εi, yi =


0 if y?i < 0

1 if 0 ≤ y?i < α

2 if α ≤ y?i
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where we also include an intercept. Then

P (yi = 1 or yi = 2) = Λ
(
x>i β

)
P (yi = 2) = Λ

(
x>i β − α

)
which allows us to construct the following pseudo-likelihood function:

Q =
∑
yi=0

log
(
1− Λ

(
x>0iθ

))
+
∑
yi 6=0

log
(
Λ
(
x>0iθ

))
+
∑
yi 6=2

log
(
1− Λ

(
x>1iθ

))
+
∑
yi=2

log
(
Λ
(
x>1iθ

))
where

x0i =

(
x>i

...0

)>
x1i =

(
x>i

...1

)>
θ =

(
β>

...− α
)>

As before, first and second order derivatives are presented in the Appendix.

Overall Auxiliary Model

Our final auxiliary model objective function is then defined by the pseudo–loglikelihood

function

logLmen (β1) + logLwomen (β2) +Q (β3)

and the moment conditions used for estimating the parameters of the structural model are

the first order conditions for maximizing this.

As is customary, we choose as our weighting matrix W = Ĵ−1
0 , where

Ĵ0 = V̂




∂ logLmi

∂β1

∂ logLwi

∂β2

∂Qi

∂β3




The (asymptotic) standard errors of the structural estimates are calculated using the

formulae in Gourieroux and Monfort (1996).

3 Data

In the United States, full retirement age for those reaching 62 before 2000 was 65 years old.

The full retirement age has been increasing ever since until it reaches 67 for those reaching 62
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in 2022. Workers who claim early retirement (between ages 62 to 65) have their basic benefit

(PIA, primary insurance account) reduced proportionately. Individuals who delay retirement

receive increases in benefits for every month of delayed retirement before age 70. (The rate of

increase rose gradually until reaching 8 percent for year of delayed retirement in 2005.) Those

claiming early retirement are also subject to an earnings test whereby half of the earnings

above a certain threshold are withheld. Most of the lost earnings are treated as delayed

receipt. (Until 2000, recipients were also subject to an earnings test during the first five

years of retirement.) Aside from the OASDI (Old Age, Survivors, and Disability Insurance)

program, the SSA also administers the SSI (Supplemental Security Income) program, which

provides assistance to individuals age 65 or older as well as disabled. The entitlement level

is unrelated to previous work earnings and is based on the individual or couple’s income and

net worth.

We estimate the model using eight waves of the Health and Retirement Study and

keep households where at least one individual was 60 years-old or more. We classify as retired

a respondent who is not working, and not looking for work and if there is any mention of

retirement through the employment status or the questions that ask the respondent whether

he or she considers him or herself retired.5 To avoid left-censoring, selected households also

had both partners working at the initial period. We excluded individuals who were part of

the military. This leaves us with 1,469 couples.

We condition covariates on the first “household year”: when the oldest partner reaches

60 years-old. The covariates we use are:

1. the age difference in the couple (husband’s age - wife’s age in years);

2. dummies for race (non-Hispanic black, Hispanic and other race with non-Hispanic

whites as the omitted category);

3. dummies for education (high school or GED, some college and college or above with

less than high school as the omitted category);

5Specifically we use the classification provided by the variable RwLBRF.
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4. indicators of region (NE, SO, and WE with MW or other region as omitted category);

5. self-reported health dummies (good health, very good health, with poor health as the

omitted category);

6. an indicator for whether the person has health insurance;

7. the total health expenditure (in 10,000 dollars);

8. indicators for whether the person had a defined contribution (DC) or defined benefit

(DB) plan; and

9. financial wealth.6

Table 1 presents the Kaplan-Meier estimates for the retirement behavior in our sample

(measured in year of retirement).

4 Results

We now present our estimation results using monthly data on retirement in couples. The

discount rate ρ is set to 0.04 and the threat points are set at the 0.6 times the utility level

they would have obtained if his or her partner never retired.7 The number of simulations in

each set of estimates is R = 5. We assume that Z(t) = tα implying a Weibull baseline hazard

for a model with δ = 1. Utility flows while in the labor force are drawn from independent

unit exponentials (Ki ∼ exp(1)).

Tables 2 and 3 present results for wives and husbands when δ is restricted to 1. Re-

sults are very robust across covariate specifications. There is positive duration dependence:

retirement is more likely as the household ages. Age differences tend to increase the retire-

ment hazard for men and decrease it for women. Since men are typically older and we count

“family age” from the 60th year of the oldest partner, a larger age difference implies that

6For financial wealth we use the transformation sgn(financial wealth)×
√

financial wealth.
7In our estimations, we experimented with multiples of this scaled by 0 and 1 as well. Results are not

much different and hence omitted.
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the wife is younger at time zero and less likely to retire at any “family age” than an older

woman (i.e., a similar wife in a household with a lower age difference). Both non-white men

and women have lower retirement hazard than non-Hispanic whites, though only Hispanics’

coefficients tend to be significant.

More educated women, but especially those with high school or GED and in some

covariate specifications with college, seem to retire earlier than those without high school,

but the coefficients on those categories are not statistically significant. For men, college-

educated husbands retire later than all other categories and the association is statistically

significant. There is some evidence that high school graduates retire earlier but the effect is

numerically small and statistically insignificant. There is some evidence that husbands in the

Northeast retire earlier whereas those in the South and West retire later than those in the

Midwest. The only statistically significant coefficients are those associated with the South

though. Geographical region does not seem to play a statistically significant role for women.

Furthermore, depending on the covariate specification, Northeast and Southern women have

a lower or higher hazard than those in the Midwest. Western wives do seem to retire earlier

in all covariate specifications, but then again standard errors are quite imprecise.

Self-reported health lowers the hazard with healthier people retiring later than those

in poor health. Only the female coefficient on “good health” is significant in some of the

specifications nonetheless. Having health insurance increases the hazard for husbands and

decreases the hazard for wives, though not in a statistically significant way for the women.

Total health expenditures increase the hazard for husband and wife. Having a defined

benefit contribution pension plan increases the probability of retirement for both genders

in a numerically and statistically significant manner. A defined contribution plan affects

negatively and significantly the male hazard of men but not the female. Wealthier women

tend to retire earlier, but financial wealth does not affect the hazard of men significantly.

Once joint retirement is accounted for, ( 1 ) the precision of the Hispanic coefficient

decreases substantially, especially for women and particularly in our last covariate specifica-

tion, though the numerical estimates also increase; ( 2 ) the coefficient estimate on “good

health” decreases numerically and is more imprecisely estimated as well, ceasing to be sta-
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tistically significant for wives; and ( 3 ) having a defined contribution plan is not statistically

significant for husbands’ retirement hazards any longer. In a few specifications we were not

able to numerically compute the standard errors for the interaction parameter, but it is

precisely estimated in those specifications with more covariates.

5 Concluding Remarks

We have presented a novel model that nests the usual proportional hazards models, but

which both accounts for joint termination of spells and is built upon an economic model of

joint decision making. We applied the model to retirement of husband and wife. Once joint

retirement is accounted for, a few features are no longer significant.

Appendix

Log-likelihood Derivatives: Weibull Model

∂ logL
∂α

=
n∑
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(1− ci)
(

1

α
+ log (ti)

)
−
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To impose α > 0 in our computations we parameterize α = exp (θ). Then,
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Pseudo-likelihood Derivatives: Ordered Model
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Appendix: Figures and Tables

Figure 1: Difference in Retirement Months (Husband-Wife)

Figure 2: Joint Retirement Regions
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Table 1: Kaplan-Meier Estimates

Time Beg. Net Survivor Std. Beg. Net Survivor Std.
(Yrs.) Total Fail Lost Function Error Total Fail Lost Function Error

Husbands Wives

1 1385 108 174 0.922 0.007 944 100 103 0.894 0.010

2 1103 76 232 0.859 0.010 741 83 130 0.794 0.014

3 795 72 96 0.781 0.012 528 81 52 0.672 0.017

4 627 78 76 0.684 0.015 395 50 49 0.587 0.019

5 473 69 98 0.584 0.017 296 61 39 0.466 0.020

6 306 66 35 0.458 0.019 196 45 11 0.359 0.021

7 205 48 22 0.351 0.020 140 28 13 0.287 0.021

8 135 37 9 0.255 0.020 99 29 8 0.203 0.020

9 89 17 11 0.206 0.019 62 21 4 0.134 0.018

10 61 19 6 0.142 0.018 37 16 1 0.076 0.015

11 36 17 2 0.075 0.015 20 8 0 0.046 0.012

12 17 8 2 0.040 0.012 12 9 0 0.011 0.007

13 7 7 0 0.000 . 3 3 0 0.000 .
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Table 2: WIVES’ Proportional Hazards (Weibull Baseline)

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

α 1.227 ∗∗ 1.234 ∗∗ 1.237 ∗∗ 1.239 ∗∗ 1.245 ∗∗ 1.247 ∗∗

( 0.042 ) ( 0.043 ) ( 0.043 ) ( 0.044 ) ( 0.045 ) ( 0.045 )

Constant -5.840 ∗∗ -5.978 ∗∗ -5.792 ∗∗ -6.003 ∗∗ -5.943 ∗∗ -5.986 ∗∗

( 0.185 ) ( 0.238 ) ( 0.270 ) ( 0.321 ) ( 0.319 ) ( 0.320 )

Age Diff. -0.068 ∗∗ -0.068 ∗∗ -0.067 ∗∗ -0.070 ∗∗ -0.070 ∗∗ -0.070 ∗∗

( 0.010 ) ( 0.011 ) ( 0.011 ) ( 0.011 ) ( 0.011 ) ( 0.011 )

Nonhisp. Black -0.134 -0.122 -0.051 -0.076 -0.040
( 0.165 ) ( 0.168 ) ( 0.174 ) ( 0.173 ) ( 0.175 )

Other race -0.440 -0.451 -0.335 -0.317 -0.283
( 0.286 ) ( 0.288 ) ( 0.290 ) ( 0.292 ) ( 0.293 )

Hispanic -0.472 ∗ -0.521 ∗∗ -0.417 ∗ -0.458 ∗ -0.422 ∗

( 0.189 ) ( 0.197 ) ( 0.205 ) ( 0.204 ) ( 0.207 )

High school or GED 0.188 0.212 0.230 0.195 0.174
( 0.150 ) ( 0.152 ) ( 0.159 ) ( 0.160 ) ( 0.161 )

Some college 0.087 0.097 0.098 0.068 0.011
( 0.160 ) ( 0.163 ) ( 0.171 ) ( 0.171 ) ( 0.175 )

College or above 0.228 0.242 0.268 0.140 0.055
( 0.173 ) ( 0.176 ) ( 0.184 ) ( 0.189 ) ( 0.194 )

NE 0.008 0.006 -0.068 -0.107 -0.121
( 0.146 ) ( 0.146 ) ( 0.152 ) ( 0.153 ) ( 0.153 )

SO -0.001 -0.004 0.018 -0.021 -0.020
( 0.118 ) ( 0.119 ) ( 0.122 ) ( 0.122 ) ( 0.121 )

WE 0.220 0.217 0.168 0.161 0.162
( 0.145 ) ( 0.147 ) ( 0.150 ) ( 0.148 ) ( 0.149 )

V Good Health -0.200 -0.237 -0.285 † -0.278
( 0.152 ) ( 0.167 ) ( 0.167 ) ( 0.169 )

Good Health -0.321 ∗ -0.384 ∗ -0.416 ∗ -0.409
( 0.159 ) ( 0.172 ) ( 0.171 ) ( 0.173 )

Health Insurance -0.020 -0.019 -0.018
( 0.033 ) ( 0.033 ) ( 0.033 )

Tot. Health Exp. 0.308 † 0.234 0.211
( 0.170 ) ( 0.173 ) ( 0.172 )

Pension (DC) 0.028 0.051
( 0.128 ) ( 0.128 )

Pension (DB) 0.360 ∗∗ 0.376 ∗∗

( 0.119 ) ( 0.119 )

Fin. Wealth 0.349 †

( 0.179 )

1. Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for α.
2. Omitted categories are Non-Hisp. White, Less than high school Midwest or Other Region, and

Poor Health.
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Table 3: HUSBANDS’ Proportional Hazards (Weibull Baseline)

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

α 1.213 ∗∗ 1.233 ∗∗ 1.233 ∗∗ 1.218 ∗∗ 1.230 ∗∗ 1.230 ∗∗

( 0.035 ) ( 0.036 ) ( 0.036 ) ( 0.037 ) ( 0.038 ) ( 0.038 )

Constant -5.504 ∗∗ -5.396 ∗∗ -5.341 ∗∗ -5.558 ∗∗ -5.607 ∗∗ -5.614 ∗∗

( 0.153 ) ( 0.194 ) ( 0.220 ) ( 0.261 ) ( 0.266 ) ( 0.265 )

Age Diff. 0.020 ∗∗ 0.023 ∗∗ 0.023 ∗∗ 0.028 ∗∗ 0.026 ∗∗ 0.027 ∗∗

( 0.006 ) ( 0.006 ) ( 0.006 ) ( 0.006 ) ( 0.006 ) ( 0.006 )

Nonhisp. Black -0.140 -0.151 -0.083 -0.093 -0.083
( 0.148 ) ( 0.151 ) ( 0.153 ) ( 0.152 ) ( 0.154 )

Other race -0.223 -0.225 -0.192 -0.172 -0.171
( 0.256 ) ( 0.254 ) ( 0.274 ) ( 0.275 ) ( 0.277 )

Hispanic -0.604 ∗∗ -0.615 ∗∗ -0.469 ∗∗ -0.468 ∗∗ -0.460 ∗∗

( 0.165 ) ( 0.167 ) ( 0.170 ) ( 0.173 ) ( 0.174 )

High school or GED 0.047 0.048 0.058 0.083 0.079
( 0.120 ) ( 0.120 ) ( 0.125 ) ( 0.127 ) ( 0.127 )

Some college -0.015 -0.013 0.012 0.030 0.020
( 0.129 ) ( 0.129 ) ( 0.133 ) ( 0.133 ) ( 0.135 )

College or above -0.289 ∗ -0.281 ∗ -0.235 † -0.215 -0.233 †

( 0.126 ) ( 0.126 ) ( 0.131 ) ( 0.133 ) ( 0.138 )

NE 0.125 0.126 0.123 0.123 0.121
( 0.116 ) ( 0.117 ) ( 0.118 ) ( 0.116 ) ( 0.116 )

SO -0.193 † -0.191 † -0.164 -0.171 -0.172 †

( 0.101 ) ( 0.101 ) ( 0.104 ) ( 0.104 ) ( 0.104 )

WE -0.044 -0.044 -0.064 -0.062 -0.060
( 0.120 ) ( 0.120 ) ( 0.122 ) ( 0.121 ) ( 0.121 )

V Good Health -0.064 -0.023 -0.023 -0.027
( 0.123 ) ( 0.128 ) ( 0.128 ) ( 0.128 )

Good Health -0.073 -0.061 -0.073 -0.078
( 0.128 ) ( 0.133 ) ( 0.133 ) ( 0.133 )

Health Insurance 0.014 † 0.014 † 0.014 †

( 0.007 ) ( 0.008 ) ( 0.008 )

Tot. Health Exp. 0.243 † 0.214 0.215
( 0.128 ) ( 0.133 ) ( 0.134 )

Pension (DC) -0.204 ∗ -0.206 †

( 0.102 ) ( 0.102 )

Pension (DB) 0.278 ∗∗ 0.278 ∗∗

( 0.098 ) ( 0.099 )

Fin. Wealth 0.084
( 0.168 )

1. Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for α.
2. Omitted categories are Non-Hisp. White, Less than high school Midwest or Other Region, and

Poor Health.
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Table 4: WIVES’ Simultaneous Duration (Threat point scale=0.6)

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

α 1.229 ∗∗ 1.238 ∗∗ 1.237 ∗∗ 1.243 ∗∗ 1.245 ∗∗ 1.248 ∗∗

( 0.029 ) ( 0.032 ) ( 0.017 ) ( 0.011 ) ( 0.013 ) ( 0.023 )

log(δ − 1) -3.237 -3.342 -3.506 -3.505 -3.507 ∗∗ -3.480 ∗∗

( . ) ( . ) ( . ) ( . ) ( 1.175 ) ( 0.597 )

Constant -5.833 ∗∗ -5.978 ∗∗ -5.792 ∗∗ -6.002 ∗∗ -5.943 ∗∗ -5.985 ∗∗

( 0.136 ) ( 0.292 ) ( 0.354 ) ( 0.437 ) ( 0.255 ) ( 0.354 )

Age Diff. -0.075 ∗∗ -0.073 ∗∗ -0.067 ∗∗ -0.082 ∗∗ -0.077 ∗∗ -0.079 ∗∗

( 0.014 ) ( 0.018 ) ( 0.015 ) ( 0.012 ) ( 0.014 ) ( 0.012 )

Nonhisp. Black -0.129 -0.172 0.029 -0.154 -0.138
( 0.132 ) ( 0.418 ) ( 0.367 ) ( 0.290 ) ( 0.504 )

Other race -0.511 † -0.359 -0.370 -0.386 -0.183
( 0.306 ) ( 0.548 ) ( 0.231 ) ( 1.151 ) ( 0.267 )

Hispanic -0.436 -0.495 -0.416 -0.545 ∗ -0.430
( 0.400 ) ( 0.354 ) ( 0.337 ) ( 0.275 ) ( 0.377 )

High school or GED 0.213 0.213 0.181 0.195 0.127
( 0.289 ) ( 0.219 ) ( 0.157 ) ( 0.124 ) ( 0.355 )

Some college 0.040 0.098 0.049 0.068 -0.015
( 0.297 ) ( 0.341 ) ( 0.144 ) ( 0.129 ) ( 0.418 )

College or above 0.225 0.248 0.343 ∗ 0.190 0.106
( 0.206 ) ( 0.233 ) ( 0.153 ) ( 0.161 ) ( 0.482 )

NE 0.068 0.007 -0.067 -0.157 -0.127
( 0.088 ) ( 0.255 ) ( 0.355 ) ( 0.134 ) ( 0.294 )

SO 0.017 -0.005 0.019 -0.021 -0.020
( 0.190 ) ( 0.274 ) ( 0.204 ) ( 0.152 ) ( 0.202 )

WE 0.221 0.217 0.168 0.161 0.161
( 0.194 ) ( 0.301 ) ( 0.253 ) ( 0.218 ) ( 0.347 )

V Good Health -0.199 -0.236 -0.284 -0.277
( 0.278 ) ( 0.147 ) ( 0.179 ) ( 0.252 )

Good Health -0.320 -0.332 † -0.400 ∗ -0.381
( 0.291 ) ( 0.181 ) ( 0.191 ) ( 0.260 )

Health Insurance -0.007 -0.013 -0.010
( 0.066 ) ( 0.045 ) ( 0.052 )

Tot. Health Exp. 0.318 0.237 0.212
( 0.266 ) ( 0.202 ) ( 0.196 )

Pension (DC) 0.115 0.125
( 0.142 ) ( 0.206 )

Pension (DB) 0.442 ∗ 0.452
( 0.186 ) ( 0.277 )

Fin. Wealth 0.399 ∗∗

( 0.153 )

1. Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for α nor δ.
2. Omitted categories are Non-Hisp. White, Less than high school Midwest or Other Region, and

Poor Health.
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Table 5: HUSBANDS’ Simultaneous Duration (Threat point scale=0.6)

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

α 1.212 ∗∗ 1.233 ∗∗ 1.233 ∗∗ 1.220 ∗∗ 1.230 ∗∗ 1.230 ∗∗

( 0.024 ) ( 0.023 ) ( 0.026 ) ( 0.010 ) ( 0.009 ) ( 0.018 )

log(δ − 1) -3.123 -3.455 -3.381 -3.455 ∗∗ -3.457 ∗∗ -3.556 ∗∗

( . ) ( . ) ( . ) ( 0.263 ) ( 1.179 ) ( 0.440 )

Constant -5.501 ∗∗ -5.394 ∗∗ -5.340 ∗∗ -5.557 ∗∗ -5.607 ∗∗ -5.614 ∗∗

( 0.086 ) ( 0.117 ) ( 0.250 ) ( 0.210 ) ( 0.200 ) ( 0.318 )

Age Diff. 0.023 ∗∗ 0.023 ∗ 0.023 ∗ 0.028 ∗∗ 0.027 ∗∗ 0.028 ∗∗

( 0.008 ) ( 0.009 ) ( 0.009 ) ( 0.007 ) ( 0.006 ) ( 0.008 )

Nonhisp. Black -0.091 -0.092 -0.070 -0.143 -0.134
( 0.252 ) ( 0.345 ) ( 0.262 ) ( 0.273 ) ( 0.282 )

Other race -0.261 -0.326 -0.219 0.004 -0.175
( 0.239 ) ( 0.513 ) ( 0.495 ) ( 0.134 ) ( 0.286 )

Hispanic -0.598 -0.649 ∗∗ -0.518 ∗∗ -0.568 ∗∗ -0.511 ∗

( 0.374 ) ( 0.150 ) ( 0.120 ) ( 0.171 ) ( 0.208 )

High school or GED 0.048 0.056 0.010 0.083 0.077
( 0.121 ) ( 0.189 ) ( 0.147 ) ( 0.100 ) ( 0.183 )

Some college 0.025 0.000 0.012 0.042 0.020
( 0.213 ) ( 0.191 ) ( 0.165 ) ( 0.155 ) ( 0.215 )

College or above -0.337 † -0.328 -0.234 † -0.214 -0.211
( 0.093 ) ( 0.210 ) ( 0.121 ) ( 0.141 ) ( 0.181 )

NE 0.082 0.076 0.124 0.125 0.071
( 0.080 ) ( 0.182 ) ( 0.136 ) ( 0.091 ) ( 0.182 )

SO -0.182 -0.190 -0.163 -0.170 -0.168
( 0.117 ) ( 0.107 ) ( 0.136 ) ( 0.115 ) ( 0.158 )

WE -0.044 -0.044 -0.063 -0.059 -0.059
( 0.193 ) ( 0.092 ) ( 0.165 ) ( 0.214 ) ( 0.201 )

V Good Health -0.062 -0.021 -0.021 -0.026
( 0.203 ) ( 0.136 ) ( 0.162 ) ( 0.205 )

Good Health -0.049 -0.060 -0.073 -0.067
( 0.237 ) ( 0.110 ) ( 0.192 ) ( 0.220 )

Health Insurance 0.014 0.014 0.014
( 0.013 ) ( 0.022 ) ( 0.018 )

Tot. Health Exp. 0.244 0.212 † 0.215
( 0.182 ) ( 0.128 ) ( 0.188 )

Pension (DC) -0.102 -0.157
( 0.164 ) ( 0.146 )

Pension (DB) 0.281 ∗ 0.278
( 0.126 ) ( 0.171 )

Fin. Wealth 0.092
( 0.183 )

1. Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for α nor δ.
2. Omitted categories are Non-Hisp. White, Less than high school Midwest or Other Region, and

Poor Health.
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