Transfers, Bequests, and Human Capital Investment in Children Over the Life Cycle

Eric French, Andrew Hood, Cormac O'Dea

University College London, Institute for Fiscal Studies and Yale University

August 3, 2017

What we do

Using UK data we

- Estimate transfers from parents to children over the life cycle
 - Time with children
 - Schooling investments to children
 - Inter-vivos transfers and bequests to children
- Incorporate these transfers into an estimated lifecycle model (similar to Lee and Seshadri 2017)
 - Separate luck from investments in driving income inequality
 - Estimate extent of intergenerational altruism
- Use the model to understand the behavioral and welfare consequences of tax and Social Security reform

What we do

Using UK data we

- Estimate transfers from parents to children over the life cycle
 - Time with children
 - Schooling investments to children
 - Inter-vivos transfers and bequests to children
- Incorporate these transfers into an estimated lifecycle model (similar to Lee and Seshadri 2017)
 - Separate luck from investments in driving income inequality
 - Estimate extent of intergenerational altruism
- Use the model to understand the behavioral and welfare consequences of tax and Social Security reform

What we do

Using UK data we

- Estimate transfers from parents to children over the life cycle
 - Time with children
 - Schooling investments to children
 - Inter-vivos transfers and bequests to children
- Incorporate these transfers into an estimated lifecycle model (similar to Lee and Seshadri 2017)
 - Separate luck from investments in driving income inequality
 - Estimate extent of intergenerational altruism
- Use the model to understand the behavioral and welfare consequences of tax and Social Security reform

Motivation: Intergenerational Altruism

- Intergenerational altruism important for understanding potential benefits of Social Security reform
 - Current generations only willing to accept benefit cuts if they are altruistic towards future generations (Fuster, Imrohoroglu, Imrohoroglu, (ReStud 2007))
- Model allows us to estimate intergenerational altruism using data on multiple parental transfers (time + money transfers)
 - Estimates less sensitive to model misspecification, confounding factors than those based on single outcome (e.g. bequests (De Nardi, French, Jones (JPE 2010; AER 2016)))

Motivation: Intergenerational Altruism

- Intergenerational altruism important for understanding potential benefits of Social Security reform
 - Current generations only willing to accept benefit cuts if they are altruistic towards future generations (Fuster, Imrohoroglu, Imrohoroglu, (ReStud 2007))
- Model allows us to estimate intergenerational altruism using data on multiple parental transfers (time + money transfers)
 - Estimates less senstitive to model misspecification, confounding factors than those based on single outcome (e.g. bequests (De Nardi, French, Jones (JPE 2010; AER 2016)))

UK Data

National Child Development Study (NCDS)

- All individuals born in a particular week of March 1958 followed up at 7, 11, 16, 23, 33, 42, 50 and 55
- Information on parental background, parental time investments, cognitive ability, school quality, educational outcomes, earnings and inter-vivos transfers
 - Ability measure: test with approx. 30 math, 30 verbal questions.
- Supplement with information on lifetime inheritance receipt for the same cohort from ELSA (UK version of HRS)

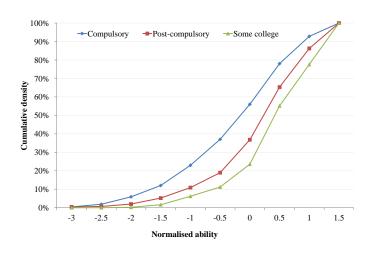
UK Data

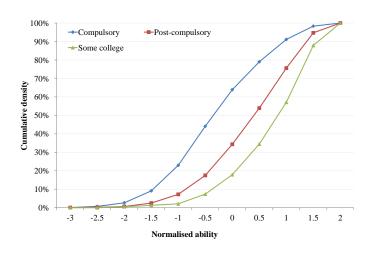
National Child Development Study (NCDS)

- All individuals born in a particular week of March 1958 followed up at 7, 11, 16, 23, 33, 42, 50 and 55
- Information on parental background, parental time investments, cognitive ability, school quality, educational outcomes, earnings and inter-vivos transfers
 - Ability measure: test with approx. 30 math, 30 verbal questions.
- Supplement with information on lifetime inheritance receipt for the same cohort from ELSA (UK version of HRS)

UK: High Intergenerational Persistence of Inequality

The "Up" documentary series


Tony


Machin et al. (1997): using our data, intergenerational correlation:

• income = 0.45

Ability at 7 by father's education

Ability at 16 by father's education

Intergenerational correlation in education

Child's education by father's education

	Child's education			
High-sch		High-school	Some	
dropout		graduate	college	
Compulsory	30%	50%	20%	
Post-compulsory	10%	47%	43%	
Some college	2%	32%	66%	

Differences in lifetime income by parental education

compared to those whose fathers had compulsory schooling

	Father's education			
	Some Some			
	post-compulsory	college		
Total difference	£159,000	£291,000		
Explained by				
Age-16 ability	£118,000	£195,000		
Explained by				
Age-7 ability	£65,000	£115,000		
Evolution of ability 7-11	£52,000	£75,000		
Evolution of ability 11-16	£1,000	£5,000		
Education given age-16 ability	£17,000	£59,000		
Transfers and bequests	£24,000	£37,000		

Notes: Men only.

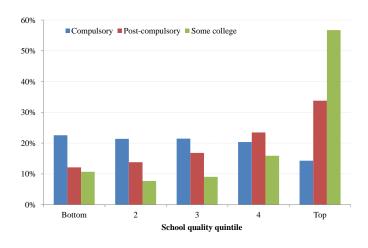
Lifetime income for those with low-educated fathers: £736,000.

Parental time investments at 7 by father's education Reading with child

	Father reads			
	Never	Sometimes	Every week	
Compulsory	30%	36%	34%	
Post-compulsory	20%	35%	45%	
Some college	18%	29%	53%	
	Mother reads			
	Never	Sometimes	Every week	
Compulsory	16%	37%	47%	
Post-compulsory	12%	31%	57%	
Some college	10%	23%	67%	

Parental time investments at 7 by father's education

Teacher's assessment of interest in child's education


	Father	
Little interest	Some interest	Very interested
55%	24%	22%
34%	22%	44%
20% 15%		65%
	Mother	
Little interest	Some interest	Very interested
23%	43%	35%
10%	30%	60%
6%	18%	76%
	55% 34% 20% Little interest 23% 10%	

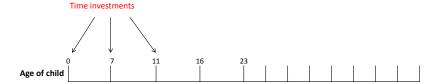
Effect of time investments on the ability

	Norm. age-11 ability	Norm. age-16 ability
Norm. age-7 time investments	0.127	
	(800.0)	
NI		0.0011
Norm. age-11 time investments		0.0911
		(0.007)
N 7 - L:I:L.	0.506	
Norm. age-7 ability	0.596	
	(800.0)	
Norma ora 11 abilita		0.770
Norm. age-11 ability		0.770
		(0.007)
N	9609	7196

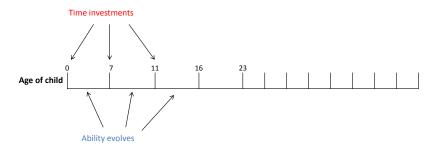
Regression includes controls for parental education and family background.

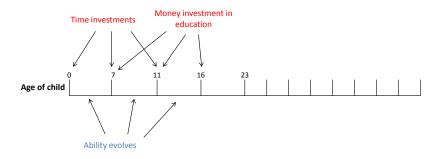
School quality at 16 by father's education

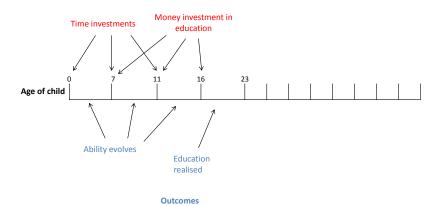
Effect of ability, school quality on educational attainment

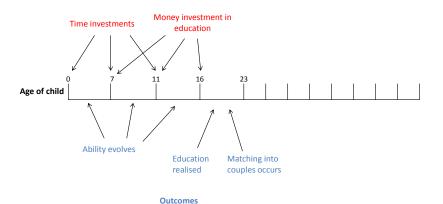

	Complete HS	Attend college
Normalised age-16 ability	0.226	0.224
	(0.005)	(0.007)
School quality quintile=2	0.022	0.003
	(0.013)	(0.019)
School quality quintile=3	0.028	0.005
School quality quintile—5	(0.013)	(0.019)
	(0.013)	(0.019)
School quality quintile=4	0.046	0.040
	(0.013)	(0.018)
Calcad modite and attle F	0.010	0.070
School quality quintile=5	0.018	0.070
	(0.014)	(0.019)
Constant	0.731	0.252
	(0.009)	(0.014)
N	7803	6070

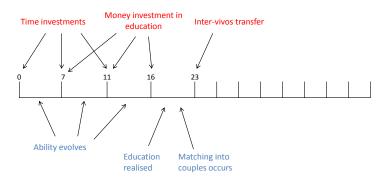
Linear probability model. Excluded category is bottom quintile of school quality. HS dropouts not included in college regression.


Parental investments

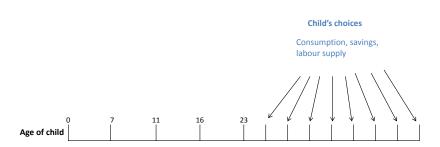

Parental investments

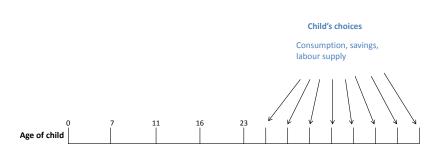

Parental investments

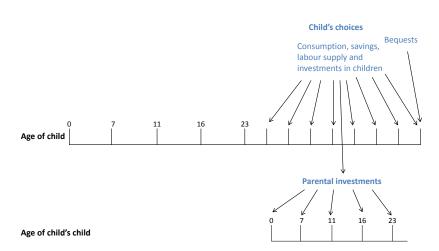

Parental investments

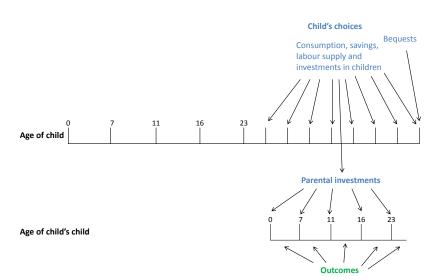

Parental investments

Parental investments




Parental investments


Parental investments



	0	7	11	16	23
Age of child's child					

Summary

- We estimate the importance of time investments, educational investments and cash transfers in driving inequalities over the lifecycle
 - Preliminary estimates suggest all channels are quantitatively important
- Goal is to build model to unpick intergenerational links
 - Will allow us to model household responses to counterfactual policies